Skip to content
Your cart is currently empty.

Study Finds Protecting Skin Cells from UV Damage Depends on NMN Synthesis

Study Finds Protecting Skin Cells from UV Damage Depends on NMN Synthesis

Research indicates that preserving NAD+ levels is critical to skin cell survival responses to damage from UV rays.


·   UV radiation triggers the enzymes NAMPT and PARP — which produce and consume NAD+, respectively — in a tug of war between cell survival and dysfunction.
·   Inhibiting NAMPT allows PARP to exhaust the NAD+ supply, which hinders the response from skin cells to UV damage and cell proliferation.
·   NAD+ precursor supplementation overrides NAMPT inhibition in UV-damaged skin cells to promote cell energy production and proliferation, providing a potential skin aging treatment.


Our cells depend on nicotinamide adenine dinucleotide (NAD+) to function and survive. Drops in NAD+ levels caused by aging are linked to diseases like metabolic disorders, cancer, and neurodegenerative conditions. Similar to aging, harmful UV rays from the sun can also trigger NAD+ depletion. Understanding how these NAD+ depleting phenomena work and can be prevented or reversed has become a hot topic in research. 

Tsuji-Naito and colleagues from the DHC Corporation Laboratories in Japan published a study in the Journal of Photochemistry and Photobiology showing that UV damage activates NAD+ synthesis and NAD+ consuming enzymes in a balancing act that determines survival or dysfunction for human skin cells. They show that, in a tug of war, UV radiation activates nicotinamide phosphoribosyltransferase (NAMPT) to produce the NAD+ precursor NMN and also activates the NAD+ consuming enzyme poly ADP-ribose polymerase (PARP). If NAD+ synthesis falters during this balancing act, PARP will severely deplete NAD+ levels, which can trigger skin cell proliferation arrest and dysfunction. Interestingly, blocking NAMPT’s NAD+ production lets PARP drain NAD+, but supplementing with the NAD+ precursors NMN (100 µM) or nicotinamide riboside (NR; 50 µM) restores the cells’ abilities to recover from UV damage.

“Since the skin is continuously exposed to UVA/B irradiation, understanding the protective role of NAMPT in UV stress will help prevent and treat skin photoaging,” said Tsuji-Naito and colleagues.

NAMPT Generates NAD+ to Promote Cell Energy Production and Viability

Since NAMPT generates NAD+’s precursor NMN, Tsuji-Naito and colleagues wanted to test whether this NMN-producing enzyme restores UV-induced NAD+ depletion. They applied the NAMPT inhibitor FK866 to UV-irradiated cells and found that it led to severe NAD+ deficiencies. Moreover, getting rid of NAMPT activity eliminates the recovery of NAD+ levels after UV damage, indicating that NAMPT plays a crucial role in maintaining NAD+ levels to counteract PARP.

Tsuji-Naito and colleagues then tested the effects of UV rays on NAMPT activity, finding that irradiation of skin cells drove NAMPT enzyme function up to almost three times its original activity eight hours after UV damage. The stimulation of NAMPT activity affected cell health by promoting energy production in the face of UV damage. However, blocking NAMPT function during UV radiation diminished cell viability by about 35%, indicating that NAMPT acts to maintain cell health and survival after UV damage.

UV Damage Triggers NAD+ Consuming Enzymes

Another enzyme involved in NAD+ metabolism is PARP. The PARP enzyme is critical to DNA repair and therefore promotes cell health and survival but consumes large quantities of NAD+ in the process. It can also be stimulated by UV rays, likely from UV-induced DNA damage. But the link between UV rays, PARP, and NAD+ levels has not been closely examined.

This led Tsuji-Naito and colleagues to test if PARP activation explains the reductions in NAD+ levels observed in UV ray-exposed skin cells. They found that UV radiation substantially depleted NAD+ levels, but when they blocked PARP activity with a molecule called 3-AB, NAD+ concentrations were restored. These findings indicate that PARP activation plays a key role in UV radiation-induced drops in NAD+ levels.

NAMPT Helps Orchestrate Balanced NAD+ Levels

These results point to a balancing act between NAD+-consuming PARP activation and NAD+-producing NAMPT stimulation with UV damage. With age, the NAD+ level balance dissipates, which can predispose people to age-related diseases. Interestingly, supplementing UV-damaged skin cells with NMN or NR during NAMPT inhibition restores cell energy production and proliferation. These results indicate that the NAD+-boosting molecules may help to maintain balanced NAD+ levels during UV damage and skin aging.

 “Our findings not only provide a conclusive explanation for the involvement of NAMPT in skin protection against daily UVA/B exposure but also identifies novel candidate molecules, NMN and NR, as potential therapeutic and preventive agents for age-associated skin disorders and functional decline,” said Tsuji-Naito and colleagues.

The study shows the intricate dynamics of NAD+ level balance as we get older. For example, if NAMPT enzyme levels become depleted, PARP enzyme consumption can lead to drastically diminished NAD+ levels, especially in the face of UV skin damage. The study also supports that boosting NAD+ levels with supplements like NMN or NR can promote skin cell health during aging. Shedding light on this pathway may also lead to the discovery of new ways to prevent age-related skin damage.



Full Text Sources

Previous post Next post

Leave a comment

Please note, comments must be approved before they are published